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A Universal Overlay for Surface Impedance

Calculations for Composite Conductors

F. W. SCHOTI

Abstnret-Sm&e impedance cafcufatfons for composite conducting

surfaces made of two different metafs can be made amenable to a uoiversaf

grapidcal solution. ‘fIds is in tbe form of an overlay to be snperimpmed on

the reflection coefficient plane aod is therefore usefuf in conjunction with

either tbe Smith Chart or the “Z-O” Chart. An example is given of a

composite conductor consisting of a thin nickel fnterfaefng layer nnderly-

fog a ttriek layer of golt such as might be found in the construction of

rrdcrosbip cirenit elements.

I. INTRODUaON

The reflection coefficient plane, of which the Smith Chart is

an example, is especially appropriate for portraying, as well as

for providing, solutions to a variety of electromagnetic wave

problems. It is particularly helpful for those cases involving

multiple reflections.

The composite conducting surface used when forming certain

types of microstnp circuit elements and transmission lines arises,

for example, when gold is applied to ceramic dielectrics using an

intermediate bonding metal such as nickel. Although the electro-

magnetic wave within the dielectric faces a nickel surface, the

layer is so thin that the wave reflection process is still dominated

by the overlying relatively thick gold layer. This configuration is

illustrated in Fig. 1.

The surface impedance presented by the wmposite conductor

to the wave at the dielectric boundary is readily determined by

conventional analysis [1], [2]; however that solution involves

several steps of complex arithmetic, whereas a single reflection

coefficient plane overlay can be developed to portray a universal

solution for any bimetallic layer. l%is overlay can be superim-

posed on either the Smith Chart or on the “Z – O” Chart, both

of which are themselves reflection coefficient plane overlays.

II. ‘_fklEORY

If a bonding conductor of thickness tand intrinsic impedance

q~ separates a dielectric region from a thick external layer of

intrinsic impedance q., the surface impedance presented to the

electromagnetic wave at the dielectric boundary is [3]:

z =q~ l+17e-2~~
s 1_re-Z~~ “

(1)

In this expression 17 is the reflection coefficient at the interface

between the two conductors and is given by

r= (’%/~b)-l

(’%/~b)+l ‘

(2)

The propagation constant y is-the value in the bonding layer and

is generally expressed in terms of the skin depth 8 as

The intrinsic impedance of a metal is well known as

q=vm

(3)
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Fig. 1. Composite conductor.

hence

%/% = ~(h/~b)(”b/ue)

and is real so that r is real although q has a phase of 450. In

these expressions p represents the permeability and a the con-

ductivity in the appropriate region. The transformation of (1) is

generally portrayed as a locus in the plane of the complex

variable w= re – zy~. CoNespondhg values of the” normalized

impedance ~= Z, /q~ can be identified either on the Smith Chart

or on a “Z – /3’; “Chart in which art impedance is expressed in

terms of its magnitude and phase. The latter chart is preferable
since the final determination of Z, requires that { be multiplied
by ~~ which has a phase of 45°. The locus of w where y has the
form of (3) is a spiral making an angle of 45° with the radius
vector. As t+ m the spiral terminates at w= O, the center of

the Chart. The initial value of w= r is defined as r=

e ‘2 fot8eJeo. Thus transformation through the layer gives
wee – 2(I+ tdlae –jz~l~e-t~o which may be written as w =

e –z(~+ ~o)/$e –~z(~+ tO)/~e~2f0/~@0, the first two te~ of which are

the universal overlay curve. The latter equation simply states
that the parameter (t+ tO)/8 is to be identified on the overlay
curve which is to be given, in addition to O., a further initial
rotation in the amount of 2 to /8-a rotation which is required to
force &e overlay to pass through w= r at t= O. Since the value
of tois of no physical importance there is no actual need to
adjust the overlay so that to = O coincides with a radius of unity

in the w plane. In fact it is this aspect of the overlay which

makes it universal, since it need not be redrawn if a different size

of Smith Chart (or ‘;Z —O” Chart) is used. Different chart sizes

simply produce different values of to/8. The value of the nor-

malized surface impedance at the dielect~c boundary is read
through the overlay by adding t/O to the starting value of the
parameter tO/8. The fact that tois a constant in each case is
shown in the “Appendix.

The spiral w= e – Z.e–P has been prepmed in Fig. 2. Incre-

mental values of ~ are identified on the spiral and are spaced
closely enough so that it can be used for graphical calculation.
The end point, T+ m, which is required for centering, is not

labelled. The spiral may be of any size that is convenient, and

for actual use must, of course, be prepared as a transparency.

III. EXAMPLE

A nickel (u= 1.42X 107 mhos/m, A= 110PO) layer of thickness

200 ~ is used to bond a relatively thick layer of gold (u = 4.54 X ,

107 xnho/m, p= PO) to a ceramic dielectric. Operation is at a

frequency of 2.46 GHz.
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cONDUCTING MEOIA

Fig. 2. Universal overlay.

To find the surface impedance Z, the first step is the evalua-

tion of the gold surface impedance normalized to the nickel, i.e.,

qe/q~=V(l/110)(1 ,42/4.54) =0.0534. This normalized im-

pedance must be transformed through the nickel layer which is

characterized in terms of its skin depth of 1/- =

1/ (7)(2.46. I09)(110)(4TI0 ‘7)(1.42. 107) =0.2567. 10’6 m.

The layer of 200 ~ is thus 0.0779 skin depths in thickness.

The spiral convergence point of the overlay is centered in the

reflection coefficient plane and the spiral rotated until it passes

through the original point r, which is the example is at (0.0534 –

1)/(0.0534 +1) = – 0.899. The latter calculation is, of course,

generally dispensed with; it is redundant since the Smith Chart

(or “Z- 0” Chart) locates the point from the normalized imped-

ance value directly. The size of overlay used for this example

was observed to have a parameter value of to/&of 0.202 when

fitted to the initial {0=0.0534. The addition of t/8=0.0779to
the starting value of the parameter gives (t+ to)/8= 0.280 which

overlaid a normalized impedance of O.131 +jO.077. Since q~ =

0.274 +jO.274 Q the actual surface impedance is Z. =0.015+

jO.057 Q. It may be noted that in this example the effect of the

thin bonding layer is primarily on the reactive component of the

impedance, since for gold q. =0.014 +jo.014 Q.

IV. APPENDm

An exponential spiral is described in polar coordinates r and O

and characterized in terms of the parameter t, as

r=K1e ‘2’1/8 e=–2t, /r3+e,.

A second spiral is characterized in terms of the parameter tz as

r= K2e ‘2t218 e= –2t2/6+e2.

When the parameter changes by a smalf amount, in the first case

dr= –(2/8)rdt1 de= – (2/8) dt,

and in the second

dr= – (2/8)r dt2 dO= – (2/8) dt2 .

If the spirals pass through the same point r, O the same incre-

ment in the parameters, dtl = dtz is required to produce the same

increment in r and O in either case. Hence the coincidence of

every pair of points on the superimposed spirals requires that

t,= t2+ to,where to is an arbitrary constant if K,, K2, 61, and 02

are arbitrary.

A Time Domain Reflectometer Using a

Semiautomatic Network Analyzer and the Fast

Fourier Transform

BENGT ULRIKSSON, STUf)~NTMShMER,IWf?

Abstruet-A time domain refleetometer system is sfrnufated by rnemmr-

fng the reffeetion coefficient in the frequency domsin and then emnputiog

the tbne donrsin sigrmf by the Fourier transform. Tbe program fms been

written for the Hewlett-Packard S409A Semiautomatic Network Analyzer.

The computation tbne baa been “ “ “ cd by using the fsst Fourier

transform. Tbe problems imposed by the difficulty of switching the HP

8409A between low- and bigb-freqoency ranges are afso discussed.

I. INTRODUaION

One advantage of the computer controlled automatic network

analyzer is that the measured results can easily be used for

further calculations. A very interesting application is to simulate

a time domain reflectometer by means of the Fourier transform.

An article [1] which described a system using the Hewlett-

Packard 8542B Automatic Network Analyzer was published in

1974. The Fourier transform was performed by a truncated

Fourier series.

A few years ago Hewlett-Packard introduced the HP 8409A

Semiautomatic Network Analyzer which is a low cost version of

the 8542B. The present article is a description of a Fourier

transform program developed for the HP 8409A controller,

which is a HP 9825 desktop computer. The program is different

in several aspects from the program in [1]. The computation is

performed by a fast Fourier transform implementation of the

discrete Fourier transform, which is considerably faster than

using a truncated Fourier series [2].

In the HP 8409A system the switching between the low

frequency range (O.1-2 GHz) and the high-frequency range

(2- 18 GHz) is performed by changing some instruments, which

is a rather time consuming operation. Therefore, only the high

frequency range is used in the program.

II. IMPLEMENTATION

The Fourier transform of a signal consisting of a dc signal, a

basic frequency and harmonics of the basic frequency, alf with

equal amplitude, is a pulse function. If the signal is band limited
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