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_ A Universal Overlay for Surface Impedance
Calculations for Composite Conductors

F. W. SCHOTT

Abstract—Surface impedance calculations for composite conducting
surfaces made of two different metals can be made amenable to a universal
graphical solution. This is in the form of an overlay to be superimposed on
the reflection coefficient plane and is therefore useful in conjunction with
either the Smith Chart or the “Z—9” Chart. An example is given of a
composite conductor consisting of a thin nickel interfacing layer underly-
ing a thick layer of gold, such as might be found in the construction of
microstrip circuit elements.

I. INTRODUCTION

The reflection coefficient plane, of which the Smith Chart is
an example, is especially appropriate for portraying, as well as
for providing, solutions to a variety of electromagnetic wave
problems. It is particularly helpful for those cases involving
multiple reflections. »

The composite conducting surface used when forming certain
"types of microstrip circuit elements and transmission lines arises,
for example, when gold is applied to ceramic dielectrics using an
intermediate bonding metal such as nickel. Although the electro-
magnetic wave within the dielectric faces a nickel surface, the
layer is so thin that the wave reflection process is still dominated

by the overlying relatively thick gold layer. This configuration is

illustrated in Fig. 1. :

The surface impedance presented by the composite conductor
to the wave at the dielectric boundary is readily determined by
conventional analysis [1],[2]; however that solution involves
several steps of complex arithmetic, whereas a single reflection
coefficient plane overlay can be developed to portray a universal
solution for any bimetallic layer. This overlay can be superim-
posed on either the Smith Chart or on the “Z—8> Chart, both
of which are themselves reflection coefficient plane overlays.

II. THEORY

If a bonding conductor of thickness ¢ and intrinsic impedance
1, separates a dielectric region from a thick external layer of
intrinsic impedance 7,, the surface impedance presented to the
electromagnetic wave at the dielectric boundary is [3]:

14+Te 2
Zs=me ", aw M
In this expression I is the reflection coefficient at the interface
between the two conductors and is given by

_ (. /mp)—1
(ne/mp)+1"

The propagation constant vy is the value in the bonding layer and
is generally expressed in terms of the skin depth § as

1.1
y=5%i3- 3

T Q)

The intrinsic impedance of a metal is well known as

1=Vjeu/o
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Fig. 1. Composite conductor.

hence

ne/'nb =V (’J'e/p!b)(ab/oe)

and is real so that T is real although 5 has a phase of 45°. In
these expressions g represents the permeability and o the con-
ductivity in the appropriate region. The transformation of (1) is
generally portrayed as a locus in the plane of the complex
variable w=Te 2", Corresponding values of the normalized
impedance {=Z_ /7, can be identified either on the Smith Chart
or on a “Z—@” Chart in which an impedance is expressed in
terms of its magnitude and phase. The latter chart is preferable
since the final determination of Z, requires that { be multiplied
by 7, which has a phase of 45°. The locus of w where y has the
form of (3) is a spiral making an angle of 45° with the radius’
vector. As t—oo" the spiral terminates at w=0, the center of
the Chart. The initial value of w=I is defined as I'=
e~2%/%J%, Thus transformation through the layer gives
w= ¢~ 2i+10)/8 ~j2t/3¢j% which may be written as w=
e A+ 0)/8p —j2t+10)/ 501240/ %1% | the first two terms of which are
the universal overlay curve. The latter equation simply states
that the parameter (£+¢,)/8 is to be identified on the overlay
curve which is to be given, in addition to 6, a further initial
rotation in the amount of 2¢, /8-a rotation which is required to
force the overlay to pass through w=T at r=0. Since the value
of t, is of no physical importance there is no actual need to
adjust the overlay so that #,.=0 coincides with a radius of unity
in the w plane. In fact it is this aspect of the overlay which
makes it universal, since it need not be redrawn if a different size
of Smith Chart (or “Z—#” Chart) is used. Different chart sizes
simply produce different values of ¢,/8. The value of the nor-
malized surface impedance at the dielectric boundary is read
through the overlay by adding £/8 to the starting value of the
parameter #,/8. The fact that 7, is a constant in each case is
shown in the Appendix. & ,

The spiral w=e ~2% /2" has been prepared in Fig. 2. Incre-
mental values of 7 are identified on the spiral and are spaced
closely enough so that it can be used for graphical calculation.
The end point, 7—co, which is required for centering, is not
labelled. The spiral may be of any size that is convenient, and
for actual use must, of course, be prepared as a transparency.

ITII. ExAMPLE .
A nickel (o=1.42% 107 mhos/m, p=110p,) layer of thickness

2004 s used to bond a relatively thick layer of gold (6=4.54%

107 mho/m, p=p,) to a ceramic dielectric. Operation is at a
frequency of 2.46 GHz.
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Fig. 2. Universal overlay.

To find the surface impedance Z, the first step is the evalua-
tion of the gold surface impedance normalized to the nickel, i.e.,

Ne /My = \/(1 /110)(1.42/4.54) =0.0534. This normalized im-
pedance must be transformed through the nickel layer which is

characterized in terms of its skin depth of 1/Vafue =

1 /\/(w)(2.46- 10°)(110)(4710 ~7)(1.42-107) =0.2567-10"% m.
The layer of 200 A is thus 0.0779 skin depths in thickness.

The spiral convergence point of the overlay is centered in the
reflection coefficient plane and the spiral rotated until it passes
through the original point I', which is the example is at (0.0534 —
1)/(0.0534+1)= —0.899. The latter calculation is, of course,
generally dispensed with; it is redundant since the Smith Chart
(or “Z—8” Chart) locates the point from the normalized imped-
ance value directly. The size of overlay used for this example
was observed to have a parameter value of ¢y /8 of 0.202 when
fitted to the initial {; =0.0534. The addition of ¢/8=0.0779 to
the starting value of the parameter gives (¢+1,)/8=0.280 which
overlaid a normalized impedance of 0.131+;0.077. Since 7, =
0.274+;0.274 Q the actual surface impedance is Z,=0.015+
J70.057 Q. It may be noted that in this example the effect of the
thin bonding layer is primarily on the reactive component of the
impedance, since for gold 5, =0.014+;0.014 Q.

IV. APPENDIX

An exponential spiral is described in polar coordinates » and 8
and characterized in terms of the parameter ¢, as

r=K1e~2t‘/8 =_‘2t1/6+01.
A second spiral is characterized in terms of the parameter ¢, as
r=K2e—2’2/8 ES —2t2/6+02

When the parameter changes by a small amount, in the first case

dr=—(2/8)rdt,
and in the second
dr=~—(2/8)rdt, di=—(2/8)dt,.

If the spirals pass through the same point 7, § the same incre-
ment in the parameters, df, =dt, is required to produce the same
increment in r and # in either case. Hence the coincidence of
every pair of points on the superimposed spirals requires that
ty =1, +1y, where t, is an arbitrary constant if K, K,, 8,, and 8,
are arbitrary.

do=—(2/8) dt,
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A Time Domain Reflectometer Using a
Semiautomatic Network Analyzer and the Fast
Fourier Transform

BENGT ULRIKSSON, STUDENT MEMBER, IEEE

Abstract—A time domain reflectometer system is simulated by measur-
ing the reflection coefficient in the frequency domain and then computing
the time domain signal by the Fourier transform. The program has been
written for the Hewlett-Packard 8409A Semiautomatic Network Analyzer.
The computation time has been minimized by using the fast Fourier
transform. The problems imposed by the difficulty of switching the HP
8409A between low- and high-frequency ranges are also discussed.

I. INTRODUCTION

One advantage of the computer controlled automatic network
analyzer is that the measured results can easily be used for
further calculations. A very interesting application is to simulate
a time domain reflectometer by means of the Fourier transform.
An article [1] which described a system using the Hewlett-
Packard 8542B Automatic Network Analyzer was published in
1974. The Fourier transform was performed by a truncated
Fourier series.

A few years ago Hewlett-Packard introduced the HP 8409A
Semiautomatic Network Analyzer which is a low cost version of
the 8542B. The present article is a description of a Fourier
transform program developed for the HP 8409A controller,
which is a HP 9825 desktop computer. The program is different
in several aspects from the program in [1]. The computation is
performed by a fast Fourier transform implementation of the
discrete Fourier transform, which is considerably faster than
using a truncated Fourier series [2].

In the HP 8409A system the switching between the low
frequency range (0.1-2 GHz) and the high-frequency range
(2-18 GHz) is performed by changing some instruments, which
is a rather time consuming operation. Therefore, only the high
frequency range is used in the program.

II. IMPLEMENTATION

The Fourier transform of a signal consisting of a dc signal, a
basic frequency and harmonics of the basic frequency, all with
equal amplitude, is a pulse function. If the signal is band limited
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